很多朋友在做資料分析時,分析兩分鐘,跑數兩小時?
在使用SQL過程中不僅要關注資料結果,同樣要注意SQL語句的執行效率。
本文涉及三部分,篇幅較長,建議收藏後翻看:
- SQL介紹
- SQL優化方法
- SQL優化實例
1、MySQL的基本架構
1)MySQL的基礎架構圖
左邊的client可以看成是客戶端,客戶端有很多,像我們經常你使用的CMD黑視窗,像我們經常用於學習的WorkBench,像企業經常使用的Navicat工具,它們都是一個客戶端。右邊的這一大堆都可以看成是Server(MySQL的服務端),我們將Server在細分為sql層和儲存引擎層。
當查詢出資料以後,會返回給執行器。執行器一方面將結果寫到查詢快取裡面,當你下次再次查詢的時候,就可以直接從查詢快取中獲取到資料了。另一方面,直接將結果響應回客戶端。
2)查詢資料庫的引擎
① show engines;
② show variables like “%storage_engine%”;
3)指定資料庫物件的儲存引擎
create table tb(
id int(4) auto_increment,
name varchar(5),
dept varchar(5),
primary key(id)
) engine=myISAM auto_increment=1 default charset=utf8;
2. SQL優化
1)為什麼需要進行SQL優化?
在進行多表連線查詢、子查詢等操作的時候,由於你寫出的SQL語句欠佳,導致的伺服器執行時間太長,我們等待結果的時間太長。基於此,我們需要學習怎麼又話SQL。
2)mysql的編寫過程和解析過程
① 編寫過程
select dinstinct ..from ..join ..on ..where ..group by ..having ..order by ..limit ..
② 解析過程
from .. on.. join ..where ..group by ..having ..select dinstinct ..order by ..limit ..
提供一個網站,詳細說明瞭mysql解析過程:
https://www.cnblogs.com/annsshadow/p/5037667.html
3)SQL優化 — 主要就是優化索引
優化SQL,最重要的就是優化SQL索引。
索引相當於字典的目錄。利用字典目錄查詢漢字的過程,就相當於利用SQL索引查詢某條記錄的過程。有了索引,就可以很方便快捷的定位某條記錄。
① 什麼是索引?
索引就是幫助MySQL高效獲取資料的一種【資料結構】。索引是一種樹結構,MySQL中一般用的是【B+樹】。
② 索引圖示說明(這裡用二叉樹來幫助我們理解索引)
樹形結構的特點是:子元素比父元素小的,放在左側;子元素比父元素大的,放在右側。
這個圖示只是為了幫我們簡單理解索引的,真實的關於【B+樹】的說明,我們會在下面進行說明。
索引是怎麼查詢資料的呢?兩個字【指向】,上圖中我們給age列指定了一個索引,即類似於右側的這種樹形結構。mysql表中的每一行記錄都有一個硬體地址,例如索引中的age=50,指向的就是源表中該行的識別符號(“硬體地址”)。也就是說,樹形索引建立了與源表中每行記錄硬體地址的對映關係,當你指定了某個索引,這種對映關係也就建成了,這就是為什麼我們可以透過索引快速定位源表中記錄的原因。
以【select * from student where age=33】查詢語句為例。當我們不加索引的時候,會從上到下掃描源表,當掃描到第5行的時候,找到了我們想要找到了元素,一共是查詢了5次。當添加了索引以後,就直接在樹形結構中進行查詢,33比50小,就從左側查詢到了23,33大於23,就又查詢到了右側,這下找到了33,整個索引結束,一共進行了3次查詢。是不是很方便,假如我們此時需要查詢age=62,你再想想“新增索引”前後,查詢次數的變化情況。
4)索引的弊端
1.當資料量很大的時候,索引也會很大(當然相比於源表來說,還是相當小的),也需要存放在記憶體/硬碟中(通常存放在硬碟中),佔據一定的記憶體空間/物理空間。
2.索引並不適用於所有情況:a.少量資料;b.頻繁進行改動的欄位,不適合做索引;c.很少使用的欄位,不需要加索引;
3.索引會提高資料查詢效率,但是會降低“增、刪、改”的效率。當不使用索引的時候,我們進行資料的增刪改,只需要操作源表即可,但是當我們新增索引後,不僅需要修改源表,也需要再次修改索引,很麻煩。儘管是這樣,新增索引還是很划算的,因為我們大多數使用的就是查詢,“查詢”對於程式的效能影響是很大的。
5)索引的優勢
1.提高查詢效率(降低了IO使用率)。當建立了索引後,查詢次數減少了。
2.降低CPU使用率。比如說【…order by age desc】這樣一個操作,當不加索引,會把源表載入到記憶體中做一個排序操作,極大的消耗了資源。但是使用了索引以後,第一索引本身就小一些,第二索引本身就是排好序的,左邊資料最小,右邊資料最大。
6)B+樹圖示說明
MySQL中索引使用的就是B+樹結構。
關於B+樹的說明:
首先,Btree一般指的都是【B+樹】,資料全部存放在葉子節點中。對於上圖來說,最下面的第3層,屬於葉子節點,真實資料部份都是存放在葉子節點當中的。那麼對於第1、2層中的資料又是幹嘛的呢?答:用於分割指標塊兒的,比如說小於26的找P1,介於26–30之間的找P2,大於30的找P3。
其次,三層【B+樹】可以存放上百萬條資料。這麼多資料怎麼放的呢?增加“節點數”。圖中我們只有三個節點。
最後,【B+樹】中查詢任意資料的次數,都是n次,n表示的是【B+樹】的高度。
3、索引的分類與建立
1)索引分類
單值索引
唯一索引
複合索引
① 單值索引
利用表中的某一個欄位建立單值索引。一張表中往往有多個欄位,也就是說每一列其實都可以建立一個索引,這個根據我們實際需求來進行建立。還需要注意的一點就是,一張表可以建立多個“單值索引”。
假如某一張表既有age欄位,又有name欄位,我們可以分別對age、name建立一個單值索引,這樣一張表就有了兩個單值索引。
② 唯一索引
也是利用表中的某一個欄位建立單值索引,與單值索引不同的是:建立唯一索引的欄位中的資料,不能有重複值。像age肯定有很多人的年齡相同,像name肯定有些人是重名的,因此都不適合建立“唯一索引”。像編號id、學號sid,對於每個人都不一樣,因此可以用於建立唯一索引。
③ 複合索引
多個列共同構成的索引。比如說我們建立這樣一個“複合索引”(name,age),先利用name進行索引查詢,當name相同的時候,我們利用age再進行一次篩選。注意:複合索引的欄位並不是非要都用完,當我們利用name欄位索引出我們想要的結果以後,就不需要再使用age進行再次篩選了。
2)建立索引
① 語法
語法:create 索引型別 索引名 on 表(欄位);
建表語句如下:
查詢表結構如下:
② 建立索引的第一種方式
Ⅰ 建立單值索引
create index dept_index on tb(dept);
Ⅱ 建立唯一索引:這裡我們假定name欄位中的值都是唯一的
create unique index name_index on tb(name);
Ⅲ 建立複合索引
create index dept_name_index on tb(dept,name);
③ 建立索引的第二種方式
先刪除之前建立的索引以後,再進行這種建立索引方式的測試;
語法:alter table 表名 add 索引型別 索引名(欄位)
Ⅰ 建立單值索引
alter table tb add index dept_index(dept);
Ⅱ 建立唯一索引:這裡我們假定name欄位中的值都是唯一的
alter table tb add unique index name_index(name);
Ⅲ 建立複合索引
alter table tb add index dept_name_index(dept,name);
④ 補充說明
如果某個欄位是primary key,那麼該欄位預設就是主鍵索引。
主鍵索引和唯一索引非常相似。相同點:該列中的資料都不能有相同值;不同點:主鍵索引不能有null值,但是唯一索引可以有null值。
3)索引刪除和索引查詢
① 索引刪除
語法:drop index 索引名 on 表名;
drop index name_index on tb;
② 索引查詢
語法:show index from 表名;
show index from tb;
結果如下:
4、SQL效能問題的探索
人為優化:需要我們使用explain分析SQL的執行計劃。該執行計劃可以模擬SQL優化器執行SQL語句,可以幫助我們瞭解到自己編寫SQL的好壞。
SQL優化器自動優化:最開始講述MySQL執行原理的時候,我們已經知道MySQL有一個優化器,當你寫了一個SQL語句的時候,SQL優化器如果認為你寫的SQL語句不夠好,就會自動寫一個好一些的等價SQL去執行。
SQL優化器自動優化功能【會干擾】我們的人為優化功能。當我們查看了SQL執行計劃以後,如果寫的不好,我們會去優化自己的SQL。當我們以為自己優化的很好的時候,最終的執行計劃,並不是按照我們優化好的SQL語句來執行的,而是有時候將我們優化好的SQL改變了,去執行。
SQL優化是一種機率問題,有時候系統會按照我們優化好的SQL去執行結果(優化器覺得你寫的差不多,就不會動你的SQL)。有時候優化器仍然會修改我們優化好的SQL,然後再去執行。
1)檢視執行計劃
語法:explain + SQL語句
eg:explain select * from tb;
2)“執行計劃”中需要知道的幾個“關鍵字”
id :編號
select_type :查詢型別
table :表
type :型別
possible_keys :預測用到的索引
key :實際使用的索引
key_len :實際使用索引的長度
ref :表之間的引用
rows :透過索引查詢到的資料量
Extra :額外的資訊
建表語句和插入資料:
# 建表语句
create table course
(
cid int(3),
cname varchar(20),
tid int(3)
);
create table teacher
(
tid int(3),
tname varchar(20),
tcid int(3)
);
create table teacherCard
(
tcid int(3),
tcdesc varchar(200)
);
# 插入数据
insert into course values(1,'java',1);
insert into course values(2,'html',1);
insert into course values(3,'sql',2);
insert into course values(4,'web',3);
insert into teacher values(1,'tz',1);
insert into teacher values(2,'tw',2);
insert into teacher values(3,'tl',3);
insert into teacherCard values(1,'tzdesc') ;
insert into teacherCard values(2,'twdesc') ;
insert into teacherCard values(3,'tldesc') ;
五、explain執行計劃常用關鍵字詳解
1)id關鍵字的使用說明
① 案例:查詢課程編號為2 或 教師證編號為3 的老師資訊:
# 查看执行计划
explain select t.*
from teacher t,course c,teacherCard tc
where t.tid = c.tid and t.tcid = tc.tcid
and (c.cid = 2 or tc.tcid = 3);
結果如下:
接著,在往teacher表中增加幾條資料。
insert into teacher values(4,'ta',4);
insert into teacher values(5,'tb',5);
insert into teacher values(6,'tc',6);
再次檢視執行計劃。
# 查看执行计划
explain select t.*
from teacher t,course c,teacherCard tc
where t.tid = c.tid and t.tcid = tc.tcid
and (c.cid = 2 or tc.tcid = 3);
結果如下:
表的執行順序 ,因表數量改變而改變的原因:笛卡爾積。
a b c
2 3 4
最终:2 * 3 * 4 = 6 * 4 = 24
c b a
4 3 2
最终:4 * 3 * 2 = 12 * 2 = 24
分析:最終執行的條數,雖然是一致的。但是中間過程,有一張臨時表是6,一張臨時表是12,很明顯6 < 12,對於記憶體來說,資料量越小越好,因此優化器肯定會選擇第一種執行順序。
結論:id值相同,從上往下順序執行。表的執行順序因表數量的改變而改變。
② 案例:查詢教授SQL課程的老師的描述(desc)
# 查看执行计划
explain select tc.tcdesc from teacherCard tc
where tc.tcid =
(
select t.tcid from teacher t
where t.tid =
(select c.tid from course c where c.cname = 'sql')
);
結果如下:
結論:id值不同,id值越大越優先查詢。這是由於在進行巢狀子查詢時,先查內層,再查外層。
③ 針對②做一個簡單的修改
# 查看执行计划
explain select t.tname ,tc.tcdesc from teacher t,teacherCard tc
where t.tcid= tc.tcid
and t.tid = (select c.tid from course c where cname = 'sql') ;
結果如下:
結論:id值有相同,又有不同。id值越大越優先;id值相同,從上往下順序執行。
2)select_type關鍵字的使用說明:查詢型別
① simple:簡單查詢
不包含子查詢,不包含union查詢。
explain select * from teacher;
結果如下:
② primary:包含子查詢的主查詢(最外層)
③ subquery:包含子查詢的主查詢(非最外層)
④ derived:衍生查詢(用到了臨時表)
a.在from子查詢中,只有一張表;
b.在from子查詢中,如果table1 union table2,則table1就是derived表;
explain select cr.cname
from ( select * from course where tid = 1 union select * from course where tid = 2 ) cr ;
結果如下:
⑤ union:union之後的表稱之為union表,如上例
⑥ union result:告訴我們,哪些表之間使用了union查詢
3)type關鍵字的使用說明:索引型別
system、const只是理想狀況,實際上只能優化到index → range → ref這個級別。要對type進行優化的前提是,你得建立索引。
① system
源表只有一條資料(實際中,基本不可能);
衍生表只有一條資料的主查詢(偶爾可以達到)。
② const
僅僅能查到一條資料的SQL ,僅針對Primary key或unique索引型別有效。
explain select tid from test01 where tid =1 ;
結果如下:
刪除以前的主鍵索引後,此時我們新增一個其他的普通索引:
create index test01_index on test01(tid) ;
# 再次查看执行计划
explain select tid from test01 where tid =1 ;
結果如下:
③ eq_ref
唯一性索引,對於每個索引鍵的查詢,返回匹配唯一行資料(有且只有1個,不能多 、不能0),並且查詢結果和資料條數必須一致。
此種情況常見於唯一索引和主鍵索引。
delete from teacher where tcid >= 4;
alter table teacherCard add constraint pk_tcid primary key(tcid);
alter table teacher add constraint uk_tcid unique index(tcid) ;
explain select t.tcid from teacher t,teacherCard tc where t.tcid = tc.tcid ;
結果如下:
總結:以上SQL,用到的索引是t.tcid,即teacher表中的tcid欄位;如果teacher表的資料個數和連線查詢的資料個數一致(都是3條資料),則有可能滿足eq_ref級別;否則無法滿足。條件很苛刻,很難達到。
④ ref
非唯一性索引,對於每個索引鍵的查詢,返回匹配的所有行(可以0,可以1,可以多)
準備資料:
建立索引,並檢視執行計劃:
# 添加索引
alter table teacher add index index_name (tname) ;
# 查看执行计划
explain select * from teacher where tname = 'tz';
結果如下:
⑤ range
檢索指定範圍的行 ,where後面是一個範圍查詢(between, >, <, >=, in)
in有時候會失效,從而轉為無索引時候的ALL
# 添加索引
alter table teacher add index tid_index (tid) ;
# 查看执行计划:以下写了一种等价SQL写法,查看执行计划
explain select t.* from teacher t where t.tid in (1,2) ;
explain select t.* from teacher t where t.tid <3 ;
結果如下:
⑥ index
查詢全部索引中的資料(掃描整個索引)
⑦ ALL
查詢全部源表中的資料(暴力掃描全表)
注意:cid是索引欄位,因此查詢索引欄位,只需要掃描索引表即可。但是tid不是索引欄位,查詢非索引欄位,需要暴力掃描整個源表,會消耗更多的資源。
4)possible_keys和key
possible_keys可能用到的索引。是一種預測,不準。瞭解一下就好。
key指的是實際使用的索引。
# 先给course表的cname字段,添加一个索引
create index cname_index on course(cname);
# 查看执行计划
explain select t.tname ,tc.tcdesc from teacher t,teacherCard tc
where t.tcid= tc.tcid
and t.tid = (select c.tid from course c where cname = 'sql') ;
結果如下:
有一點需要注意的是:如果possible_key/key是NULL,則說明沒用索引。
5)key_len
索引的長度,用於判斷複合索引是否被完全使用(a,b,c)。
① 新建一張新表,用於測試
# 创建表
create table test_kl
(
name char(20) not null default ''
);
# 添加索引
alter table test_kl add index index_name(name) ;
# 查看执行计划
explain select * from test_kl where name ='' ;
結果如下:
結果分析:因為我沒有設定服務端的字符集,因此預設的字符集使用的是latin1,對於latin1一個字元代表一個位元組,因此這列的key_len的長度是20,表示使用了name這個索引。
② 給test_kl表,新增name1列,該列沒有設定“not null”
結果如下:
結果分析:如果索引欄位可以為null,則mysql底層會使用1個位元組用於標識。
③ 刪除原來的索引name和name1,新增一個複合索引
# 删除原来的索引name和name1
drop index index_name on test_kl ;
drop index index_name1 on test_kl ;
# 增加一个复合索引
create index name_name1_index on test_kl(name,name1);
# 查看执行计划
explain select * from test_kl where name1 = '' ; --121
explain select * from test_kl where name = '' ; --60
結果如下:
結果分析:對於下面這個執行計劃,可以看到我們只使用了複合索引的第一個索引欄位name,因此key_len是20,這個很清楚。再看上面這個執行計劃,我們雖然僅僅在where後面使用了複合索引欄位中的name1欄位,但是你要使用複合索引的第2個索引欄位,會預設使用了複合索引的第1個索引欄位name,由於name1可以是null,因此key_len = 20 + 20 + 1 = 41呀!
④ 再次怎加一個name2欄位,併為該欄位建立一個索引。
不同的是:該欄位資料型別是varchar
# 新增一个字段name2,name2可以为null
alter table test_kl add column name2 varchar(20) ;
# 给name2字段,设置为索引字段
alter table test_kl add index name2_index(name2) ;
# 查看执行计划
explain select * from test_kl where name2 = '' ;
結果如下:
結果分析:key_len = 20 + 1 + 2,這個20 + 1我們知道,這個2又代表什麼呢?原來varchar屬於可變長度,在mysql底層中,用2個位元組標識可變長度。
6)ref
這裡的ref的作用,指明當前表所參照的欄位。
注意與type中的ref值區分。在type中,ref只是type型別的一種選項值。
# 给course表的tid字段,添加一个索引
create index tid_index on course(tid);
# 查看执行计划
explain select * from course c,teacher t
where c.tid = t.tid
and t.tname = 'tw';
結果如下:
結果分析:有兩個索引,c表的c.tid引用的是t表的tid欄位,因此可以看到顯示結果為【資料庫名.t.tid】,t表的t.name引用的是一個常量”tw”,因此可以看到結果顯示為const,表示一個常量。
7)rows(這個目前還是有點疑惑)
被索引優化查詢的資料個數 (實際透過索引而查詢到的資料個數)
explain select *
from course c,teacher t
where c.tid = t.tid
and t.tname = 'tz' ;
結果如下:
8)extra
表示其他的一些說明,也很有用。
① using filesort:針對單索引的情況
當出現了這個詞,表示你當前的SQL效能消耗較大。表示進行了一次“額外”的排序。常見於order by語句中。
Ⅰ 什麼是“額外”的排序?
為了講清楚這個,我們首先要知道什麼是排序。我們為了給某一個欄位進行排序的時候,首先你得先查詢到這個欄位,然後在將這個欄位進行排序。
緊接著,我們檢視如下兩個SQL語句的執行計劃。
# 新建一张表,建表同时创建索引
create table test02
(
a1 char(3),
a2 char(3),
a3 char(3),
index idx_a1(a1),
index idx_a2(a2),
index idx_a3(a3)
);
# 查看执行计划
explain select * from test02 where a1 ='' order by a1 ;
explain select * from test02 where a1 ='' order by a2 ;
結果如下:
結果分析:對於第一個執行計劃,where後面我們先查詢了a1欄位,然後再利用a1做了依次排序,這個很輕鬆。但是對於第二個執行計劃,where後面我們查詢了a1欄位,然而利用的卻是a2欄位進行排序,此時myql底層會進行一次查詢,進行“額外”的排序。
總結:對於單索引,如果排序和查詢是同一個欄位,則不會出現using filesort;如果排序和查詢不是同一個欄位,則會出現using filesort;因此where哪些欄位,就order by哪些些欄位。
② using filesort:針對複合索引的情況
不能跨列(官方術語:最佳左字首)
# 删除test02的索引
drop index idx_a1 on test02;
drop index idx_a2 on test02;
drop index idx_a3 on test02;
# 创建一个复合索引
alter table test02 add index idx_a1_a2_a3 (a1,a2,a3) ;
# 查看下面SQL语句的执行计划
explain select *from test02 where a1='' order by a3 ; --using filesort
explain select *from test02 where a2='' order by a3 ; --using filesort
explain select *from test02 where a1='' order by a2 ;
結果如下:
結果分析:複合索引的順序是(a1,a2,a3),可以看到a1在最左邊,因此a1就叫做“最佳左字首”,如果要使用後面的索引欄位,必須先使用到這個a1欄位。對於explain1,where後面我們使用a1欄位,但是後面的排序使用了a3,直接跳過了a2,屬於跨列;對於explain2,where後面我們使用了a2欄位,直接跳過了a1欄位,也屬於跨列;對於explain3,where後面我們使用a1欄位,後面使用的是a2欄位,因此沒有出現【using filesort】。
③ using temporary
當出現了這個詞,也表示你當前的SQL效能消耗較大。這是由於當前SQL用到了臨時表。一般出現在group by中。
explain select a1 from test02 where a1 in ('1','2','3') group by a1 ;
explain select a1 from test02 where a1 in ('1','2','3') group by a2 ; --using temporary
結果如下:
結果分析:當你查詢哪個欄位,就按照那個欄位分組,否則就會出現using temporary。
針對using temporary,我們在看一個例子:
using temporary表示需要額外再使用一張表,一般出現在group by語句中。雖然已經有表了,但是不適用,必須再來一張表。
再次來看mysql的編寫過程和解析過程。
Ⅰ 編寫過程
select dinstinct ..from ..join ..on ..where ..group by ..having ..order by ..limit ..
Ⅱ 解析過程
from .. on.. join ..where ..group by ..having ..select dinstinct ..order by ..limit ..
很顯然,where後是group by,然後才是select。基於此,我們再檢視如下兩個SQL語句的執行計劃。
explain select * from test03 where a2=2 and a4=4 group by a2,a4;
explain select * from test03 where a2=2 and a4=4 group by a3;
分析如下:對於第一個執行計劃,where後面是a2和a4,接著我們按照a2和a4分組,很明顯這兩張表已經有了,直接在a2和a4上分組就行了。但是對於第二個執行計劃,where後面是a2和a4,接著我們卻按照a3分組,很明顯我們沒有a3這張表,因此有需要再來一張臨時表a3。因此就會出現using temporary。
④ using index
當你看到這個關鍵詞,恭喜你,表示你的SQL效能提升了。
using index稱之為“索引覆蓋”。
當出現了using index,就表示不用讀取源表,而只利用索引獲取資料,不需要回源表查詢。
只要使用到的列,全部出現在索引中,就是索引覆蓋。
# 删除test02中的复合索引idx_a1_a2_a3
drop index idx_a1_a2_a3 on test02;
# 重新创建一个复合索引idx_a1_a2
create index idx_a1_a2 on test02(a1,a2);
# 查看执行计划
explain select a1,a3 from test02 where a1='' or a3= '' ;
explain select a1,a2 from test02 where a1='' and a2= '' ;
結果如下:
結果分析:我們建立的是a1和a2的複合索引,對於第一個執行計劃,我們卻出現了a3,該欄位並沒有建立索引,因此沒有出現using index,而是using where,表示我們需要回表查詢。對於第二個執行計劃,屬於完全的索引覆蓋,因此出現了using index。
針對using index,我們在檢視一個案例:
explain select a1,a2 from test02 where a1='' or a2= '' ;
explain select a1,a2 from test02;
結果如下:
如果用到了索引覆蓋(using index時),會對possible_keys和key造成影響:
a.如果沒有where,則索引只出現在key中;
b.如果有where,則索引 出現在key和possible_keys中。
⑤ using where
表示需要【回表查詢】,表示既在索引中進行了查詢,又回到了源表進行了查詢。
# 删除test02中的复合索引idx_a1_a2
drop index idx_a1_a2 on test02;
# 将a1字段,新增为一个索引
create index a1_index on test02(a1);
# 查看执行计划
explain select a1,a3 from test02 where a1="" and a3="" ;
結果如下:
結果分析:我們既使用了索引a1,表示我們使用了索引進行查詢。但是又對於a3欄位,我們並沒有使用索引,因此對於a3欄位,需要回源表查詢,這個時候出現了using where。
⑥ impossible where(瞭解)
當where子句永遠為False的時候,會出現impossible where
# 查看执行计划
explain select a1 from test02 where a1="a" and a1="b" ;
結果如下:
6、優化示例
1)引入案例
# 创建新表
create table test03
(
a1 int(4) not null,
a2 int(4) not null,
a3 int(4) not null,
a4 int(4) not null
);
# 创建一个复合索引
create index a1_a2_a3_test03 on test03(a1,a2,a3);
# 查看执行计划
explain select a3 from test03 where a1=1 and a2=2 and a3=3;
結果如下:
推薦寫法:複合索引順序和使用順序一致。
下面看看【不推薦寫法】:複合索引順序和使用順序不一致。
# 查看执行计划
explain select a3 from test03 where a3=1 and a2=2 and a1=3;
結果如下:
結果分析:雖然結果和上述結果一致,但是不推薦這樣寫。但是這樣寫怎麼又沒有問題呢?這是由於SQL優化器的功勞,它幫我們調整了順序。
最後再補充一點:對於複合索引,不要跨列使用
# 查看执行计划
explain select a3 from test03 where a1=1 and a3=2 group by a3;
結果如下:
結果分析:a1_a2_a3是一個複合索引,我們使用a1索引後,直接跨列使用了a3,直接跳過索引a2,因此索引a3失效了,當使用a3進行分組的時候,就會出現using where。
2)單表優化
# 创建新表
create table book
(
bid int(4) primary key,
name varchar(20) not null,
authorid int(4) not null,
publicid int(4) not null,
typeid int(4) not null
);
# 插入数据
insert into book values(1,'tjava',1,1,2) ;
insert into book values(2,'tc',2,1,2) ;
insert into book values(3,'wx',3,2,1) ;
insert into book values(4,'math',4,2,3) ;
結果如下:
案例:查詢authorid=1且typeid為2或3的bid,並根據typeid降序排列。
explain
select bid from book
where typeid in(2,3) and authorid=1
order by typeid desc ;
結果如下:
這是沒有進行任何優化的SQL,可以看到typ為ALL型別,extra為using filesort,可以想象這個SQL有多恐怖。
優化:新增索引的時候,要根據MySQL解析順序新增索引,又回到了MySQL的解析順序,下面我們再來看看MySQL的解析順序。
from .. on.. join ..where ..group by ..having ..select dinstinct ..order by ..limit ..
① 優化1:基於此,我們進行索引的新增,並再次檢視執行計劃。
# 添加索引
create index typeid_authorid_bid on book(typeid,authorid,bid);
# 再次查看执行计划
explain
select bid from book
where typeid in(2,3) and authorid=1
order by typeid desc ;
結果如下:
結果分析:結果並不是和我們想象的一樣,還是出現了using where,檢視索引長度key_len=8,表示我們只使用了2個索引,有一個索引失效了。
② 優化2:使用了in有時候會導致索引失效,基於此有了如下一種優化思路。
將in欄位放在最後面。需要注意一點:每次建立新的索引的時候,最好是刪除以前的廢棄索引,否則有時候會產生干擾(索引之間)。
# 删除以前的索引
drop index typeid_authorid_bid on book;
# 再次创建索引
create index authorid_typeid_bid on book(authorid,typeid,bid);
# 再次查看执行计划
explain
select bid from book
where authorid=1 and typeid in(2,3)
order by typeid desc ;
結果如下:
結果分析:這裡雖然沒有變化,但是這是一種優化思路。
總結如下:
a.最佳做字首,保持索引的定義和使用的順序一致性
b.索引需要逐步優化(每次建立新索引,根據情況需要刪除以前的廢棄索引)
c.將含In的範圍查詢,放到where條件的最後,防止失效。
本例中同時出現了Using where(需要回原表); Using index(不需要回原表):原因,where authorid=1 and typeid in(2,3)中authorid在索引(authorid,typeid,bid)中,因此不需要回原表(直接在索引表中能查到);而typeid雖然也在索引(authorid,typeid,bid)中,但是含in的範圍查詢已經使該typeid索引失效,因此相當於沒有typeid這個索引,所以需要回原表(using where);
例如以下沒有了In,則不會出現using where:
explain select bid from book
where authorid=1 and typeid =3
order by typeid desc ;
結果如下:
3)兩表優化
# 创建teacher2新表
create table teacher2
(
tid int(4) primary key,
cid int(4) not null
);
# 插入数据
insert into teacher2 values(1,2);
insert into teacher2 values(2,1);
insert into teacher2 values(3,3);
# 创建course2新表
create table course2
(
cid int(4) ,
cname varchar(20)
);
# 插入数据
insert into course2 values(1,'java');
insert into course2 values(2,'python');
insert into course2 values(3,'kotlin');
案例:使用一個左連線,查詢教java課程的所有資訊。
explain
select *
from teacher2 t
left outer join course2 c
on t.cid=c.cid
where c.cname='java';
結果如下:
對於兩張表,索引往哪裡加?答:對於表連線,小表驅動大表。索引建立在經常使用的欄位上。
為什麼小表驅動大表好一些呢?
小表:10
大表:300
# 小表驅動大表
select …where 小表.x10=大表.x300 ;
for(int i=0;i<小表.length10;i++)
{
for(int j=0;j<大表.length300;j++)
{
…
}
}
# 大表驅動小表
select …where 大表.x300=小表.x10 ;
for(int i=0;i<大表.length300;i++)
{
for(int j=0;j<小表.length10;j++)
{
…
}
}
分析:以上2個FOR迴圈,最終都會迴圈3000次;但是對於雙層迴圈來說:一般建議,將資料小的迴圈,放外層。資料大的迴圈,放內層。不用管這是為什麼,這是程式語言的一個原則,對於雙重迴圈,外層迴圈少,記憶體迴圈大,程式的效能越高。
小表:10
大表:300
# 小表驱动大表
select ...where 小表.x10=大表.x300 ;
for(int i=0;i<小表.length10;i++)
{
for(int j=0;j<大表.length300;j++)
{
...
}
}
# 大表驱动小表
select ...where 大表.x300=小表.x10 ;
for(int i=0;i<大表.length300;i++)
{
for(int j=0;j<小表.length10;j++)
{
...
}
}
分析:以上2個FOR迴圈,最終都會迴圈3000次;但是對於雙層迴圈來說:一般建議,將資料小的迴圈,放外層。資料大的迴圈,放內層。不用管這是為什麼,這是程式語言的一個原則,對於雙重迴圈,外層迴圈少,記憶體迴圈大,程式的效能越高。
我們已經知道了,對於兩表連線,需要利用小表驅動大表,例如【…on t.cid=c.cid】,t如果是小表(10條),c如果是大表(300條),那麼t每迴圈1次,就需要迴圈300次,即t表的t.cid欄位屬於,經常使用的欄位,因此需要給cid欄位新增索引。
更深入的說明:一般情況下,左連線給左表加索引。右連線給右表加索引。其他表需不需要加索引,我們逐步嘗試。
# 给左表的字段加索引
create index cid_teacher2 on teacher2(cid);
# 查看执行计划
explain
select *
from teacher2 t
left outer join course2 c
on t.cid=c.cid
where c.cname='java';
結果如下:
當然你可以下去接著優化,給cname新增一個索引。索引優化是一個逐步的過程,需要一點點嘗試。
# 给cname的字段加索引
create index cname_course2 on course2(cname);
# 查看执行计划
explain
select t.cid,c.cname
from teacher2 t
left outer join course2 c
on t.cid=c.cid
where c.cname='java';
結果如下:
最後補充一個:Using join buffer是extra中的一個選項,表示Mysql引擎使用了“連線快取”,即MySQL底層動了你的SQL,你寫的太差了。
4)三表優化
大於等於張表,優化原則一樣
小表驅動大表
索引建立在經常查詢的欄位上
7、避免索引失效的一些原則
① 複合索引需要注意的點
複合索引,不要跨列或無序使用(最佳左字首)
複合索引,儘量使用全索引匹配,也就是說,你建立幾個索引,就使用幾個索引
② 不要在索引上進行任何操作(計算、函式、型別轉換),否則索引失效
explain select * from book where authorid = 1 and typeid = 2;
explain select * from book where authorid*2 = 1 and typeid = 2 ;
結果如下:
③ 索引不能使用不等於(!= <>)或is null (is not null),否則自身以及右側所有全部失效(針對大多數情況)。複合索引中如果有>,則自身和右側索引全部失效。
# 针对不是复合索引的情况
explain select * from book where authorid != 1 and typeid =2 ;
explain select * from book where authorid != 1 and typeid !=2 ;
結果如下:
再觀看下面這個案例:
# 删除单独的索引
drop index authorid_index on book;
drop index typeid_index on book;
# 创建一个复合索引
alter table book add index idx_book_at (authorid,typeid);
# 查看执行计划
explain select * from book where authorid > 1 and typeid = 2 ;
explain select * from book where authorid = 1 and typeid > 2 ;
結果如下:
結論:複合索引中如果有【>】,則自身和右側索引全部失效。
在看看複合索引中有【<】的情況:
我們學習索引優化 ,是一個大部分情況適用的結論,但由於SQL優化器等原因 該結論不是100%正確。一般而言, 範圍查詢(> < in),之後的索引失效。
④ SQL優化,是一種機率層面的優化。至於是否實際使用了我們的優化,需要透過explain進行推測。
# 删除复合索引
drop index authorid_typeid_bid on book;
# 为authorid和typeid,分别创建索引
create index authorid_index on book(authorid);
create index typeid_index on book(typeid);
# 查看执行计划
explain select * from book where authorid = 1 and typeid =2 ;
結果如下:
結果分析:我們建立了兩個索引,但是實際上只使用了一個索引。因為對於兩個單獨的索引,程式覺得只用一個索引就夠了,不需要使用兩個。
當我們建立一個複合索引,再次執行上面的SQL:
# 查看执行计划
explain select * from book where authorid = 1 and typeid =2 ;
結果如下:
⑤ 索引覆蓋,百分之百沒問題
⑥ like儘量以“常量”開頭,不要以’%’開頭,否則索引失效
explain select * from teacher where tname like "%x%" ;
explain select * from teacher where tname like 'x%';
explain select tname from teacher where tname like '%x%';
結果如下:
結論如下:like儘量不要使用類似”%x%”情況,但是可以使用”x%”情況。如果非使用 “%x%”情況,需要使用索引覆蓋。
⑦ 儘量不要使用型別轉換(顯示、隱式),否則索引失效
explain select * from teacher where tname = 'abc' ;
explain select * from teacher where tname = 123 ;
結果如下:
⑧ 儘量不要使用or,否則索引失效
explain select * from teacher where tname ='' and tcid >1 ;
explain select * from teacher where tname ='' or tcid >1 ;
結果如下:
注意:or很猛,會讓自身索引和左右兩側的索引都失效。
8、一些其他的優化方法
1)exists和in的優化
如果主查詢的資料集大,則使用i關鍵字,效率高。
如果子查詢的資料集大,則使用exist關鍵字,效率高。
select ..from table where exist (子查询) ;
select ..from table where 字段 in (子查询) ;
2)order by優化
- IO就是訪問硬碟檔案的次數
- using filesort 有兩種演算法:雙路排序、單路排序(根據IO的次數)
- MySQL4.1之前預設使用雙路排序;雙路:掃描2次磁碟(1:從磁碟讀取排序欄位,對排序欄位進行排序(在buffer中進行的排序)2:掃描其他欄位)
- MySQL4.1之後預設使用單路排序:只讀取一次(全部欄位),在buffer中進行排序。但種單路排序會有一定的隱患(不一定真的是“單路/1次IO”,有可能多次IO)。原因:如果資料量特別大,則無法將所有欄位的資料一次性讀取完畢,因此會進行“分片讀取、多次讀取”。
- 注意:單路排序 比雙路排序 會佔用更多的buffer。
- 單路排序在使用時,如果資料大,可以考慮調大buffer的容量大小:
# 不一定真的是“单路/1次IO”,有可能多次IO
set max_length_for_sort_data = 1024
如果max_length_for_sort_data值太低,則mysql會自動從 單路->雙路(太低:需要排序的列的總大小超過了max_length_for_sort_data定義的位元組數)
① 提高order by查詢的策略:
選擇使用單路、雙路 ;調整buffer的容量大小
避免使用select * …(select後面寫所有欄位,也比寫*效率高)
複合索引,不要跨列使用 ,避免using filesort保證全部的排序欄位,排序的一致性(都是升序或降序)
篇幅很長,內容較多,建議收藏。
我是「數據分析那些事」。常年分享數據分析乾貨,不定期分享好用的職場技能工具。各位也可以關注我的Facebook,按讚我的臉書並私訊「10」,送你十週入門數據分析電子書唷!期待你與我互動起來~