Python實現常見的8個機率分佈公式和視覺化

均勻分佈

最直接的分佈是均勻分佈。均勻分佈是一種機率分佈,其中所有結果的可能性均等。例如,如果我們擲一個公平的骰子,落在任何數字上的機率是 1/6。這是一個離散的均勻分佈。

import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
# for continuous
a = 0
b = 50
size = 5000
X_continuous = np.linspace(a, b, size)
continuous_uniform = stats.uniform(loc=a, scale=b)
continuous_uniform_pdf = continuous_uniform.pdf(X_continuous)
# for discrete
X_discrete = np.arange(1, 7)
discrete_uniform = stats.randint(1, 7)
discrete_uniform_pmf = discrete_uniform.pmf(X_discrete)
# plot both tables
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15,5))
# discrete plot
ax[0].bar(X_discrete, discrete_uniform_pmf)
ax[0].set_xlabel("X")
ax[0].set_ylabel("Probability")
ax[0].set_title("Discrete Uniform Distribution")
# continuous plot
ax[1].plot(X_continuous, continuous_uniform_pdf)
ax[1].set_xlabel("X")
ax[1].set_ylabel("Probability")
ax[1].set_title("Continuous Uniform Distribution")
plt.show()

高斯分佈

高斯分佈可能是最常聽到也熟悉的分佈。它有幾個名字:有人稱它為鐘形曲線,因為它的機率圖看起來像一個鐘形,有人稱它為高斯分佈,因為首先描述它的德國數學家卡爾·高斯命名,還有一些人稱它為正態分佈,因為早期的統計學家 注意到它一遍又一遍地再次發生。

mu = 0variance = 1
sigma = np.sqrt(variance)
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
plt.subplots(figsize=(8, 5))
plt.plot(x, stats.norm.pdf(x, mu, sigma))
plt.title("Normal Distribution")
plt.show()

對數正態分佈

對數正態分佈是對數呈正態分佈的隨機變數的連續機率分佈。因此,如果隨機變數 X 是對數正態分佈的,則 Y = ln(X) 具有正態分佈。

X = np.linspace(0, 6, 500)std = 1
mean = 0
lognorm_distribution = stats.lognorm([std], loc=mean)
lognorm_distribution_pdf = lognorm_distribution.pdf(X)
fig, ax = plt.subplots(figsize=(8, 5))
plt.plot(X, lognorm_distribution_pdf, label="μ=0, σ=1")
ax.set_xticks(np.arange(min(X), max(X)))
std = 0.5
mean = 0
lognorm_distribution = stats.lognorm([std], loc=mean)
lognorm_distribution_pdf = lognorm_distribution.pdf(X)
plt.plot(X, lognorm_distribution_pdf, label="μ=0, σ=0.5")
std = 1.5
mean = 1
lognorm_distribution = stats.lognorm([std], loc=mean)
lognorm_distribution_pdf = lognorm_distribution.pdf(X)
plt.plot(X, lognorm_distribution_pdf, label="μ=1, σ=1.5")
plt.title("Lognormal Distribution")
plt.legend()
plt.show()

泊松分佈

泊松分佈以法國數學家西蒙·丹尼斯·泊松的名字命名。這是一個離散的機率分佈,這意味著它計算具有有限結果的事件 — — 換句話說,它是一個計數分佈。因此,泊松分佈用於顯示事件在指定時期內可能發生的次數。

from scipy import statsprint(stats.poisson.pmf(k=9, mu=3))
"""
0.002700503931560479
"""
X = stats.poisson.rvs(mu=3, size=500)

plt.subplots(figsize=(8, 5))
plt.hist(X, density=True, edgecolor="black")
plt.title("Poisson Distribution")
plt.show()

指數分佈

指數分佈是泊松點過程中事件之間時間的機率分佈。指數分佈的機率密度函式如下:

X = np.linspace(0, 5, 5000)exponetial_distribtuion = stats.expon.pdf(X, loc=0, scale=1)plt.subplots(figsize=(8,5))
plt.plot(X, exponetial_distribtuion)
plt.title("Exponential Distribution")
plt.show()

二項分佈

可以將二項分佈視為實驗中成功或失敗的機率。有些人也可能將其描述為拋硬幣機率。

X = np.random.binomial(n=1, p=0.5, size=1000)plt.subplots(figsize=(8, 5))
plt.hist(X)
plt.title("Binomial Distribution")
plt.show()

學生 t 分佈

學生 t 分佈(或簡稱 t 分佈)是在樣本量較小且總體標準差未知的情況下估計正態分佈總體的均值時出現的連續機率分佈族的任何成員。它是由英國統計學家威廉·西利·戈塞特(William Sealy Gosset)以筆名“student”開發的。

import seaborn as sns
from scipy import stats

X1 = stats.t.rvs(df=1, size=4)
X2 = stats.t.rvs(df=3, size=4)
X3 = stats.t.rvs(df=9, size=4)

plt.subplots(figsize=(8,5))
sns.kdeplot(X1, label = "1 d.o.f")
sns.kdeplot(X2, label = "3 d.o.f")
sns.kdeplot(X3, label = "6 d.o.f")
plt.title("Student's t distribution")
plt.legend()
plt.show()

卡方分佈

卡方分佈是伽馬分佈的一個特例;對於 k 個自由度,卡方分佈是一些獨立的標準正態隨機變數的 k 的平方和。

X = np.arange(0, 6, 0.25)plt.subplots(figsize=(8, 5))
plt.plot(X, stats.chi2.pdf(X, df=1), label="1 d.o.f")
plt.plot(X, stats.chi2.pdf(X, df=2), label="2 d.o.f")
plt.plot(X, stats.chi2.pdf(X, df=3), label="3 d.o.f")
plt.title("Chi-squared Distribution")
plt.legend()
plt.show()

文章推薦

餅圖變形記,肝了3000字,收藏就是學會!

--

--

這是一個專注於數據分析職場的內容部落格,聚焦一批數據分析愛好者,在這裡,我會分享數據分析相關知識點推送、(工具/書籍)等推薦、職場心得、熱點資訊剖析以及資源大盤點,希望同樣熱愛數據的我們一同進步! 臉書會有更多互動喔:https://www.facebook.com/shujvfenxi/

Love podcasts or audiobooks? Learn on the go with our new app.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
數據分析那些事

數據分析那些事

這是一個專注於數據分析職場的內容部落格,聚焦一批數據分析愛好者,在這裡,我會分享數據分析相關知識點推送、(工具/書籍)等推薦、職場心得、熱點資訊剖析以及資源大盤點,希望同樣熱愛數據的我們一同進步! 臉書會有更多互動喔:https://www.facebook.com/shujvfenxi/